Review: Modelling Optimal Location for Electric Vehicle Charging
Station based on Existing Power Grid Capacity

Author: Lhogeshwaran Purushothaman
Supervisor: Adam Berry, Simona Mihaita, UTS

Abstract

The adoption of electric vehicles by consumers is directly dependent on the accessibility to
EV charging stations. The location of the EV charging station primarily depends on
convenience and access to the customer and constraints on the existing power grid. While
there are several studies that focus on optimizing the location of EV charging stations based
on proximity to the customer thereby improving the convenience and access, the real-world
scenario of optimizing the location of EV charging stations at the current state depends more
on the constraints on the existing power grids capacity to supply power to these stations
without overloading the grid infrastructure. This research focusses on using the location-
allocation model or fixed-charge model to determine the number of charging stations that
can be allocated based on the surplus capacity of the power grid and p-median model to
optimize the location of the charging stations to improve convenience of access to the
customers.

Introduction

The Australian government has been taking considerable actions to promote the use of
electric vehicles. A primary issue hindering the adoption of electric vehicles is the ability to
recharge them with the same convenience as combustion engine vehicles. This problem has
attracted several research focussing on identifying optimal locations for placing electric
vehicle charging stations considering many factors.

Majority of the studies attempt to determine suitable locations for the electric charging
stations based on the travel and refuelling pattern of combustion engine vehicles. However,
the usage pattern and behaviour of electric vehicle drivers and combustion engine drivers
vary greatly. The charging process of electric vehicle also varies greatly from a combustion
engine vehicle in terms of time required to achieve similar mileage (Balint Csonka, 2018).
Owners of hybrid vehicles combining both forms of fuel preferred to recharge at workspaces
while battery electric vehicle owners preferred home charging (Scott Hardman, 2018) (Patrick
Morrissey, Future standard and fast charging infrastructure planning: An analysis of electric
vehicle charging behaviour, 2016). This behavior was driven by the concern for unavailability
of charging ports at workplace or public charging stations and the time constraint (Nicholas,
2015).1t was determined by a study by (Patrick Morrissey, Future standard and fast charging
infrastructure planning: An analysis of electric vehicle charging behaviour, 2016) that at
present, charging at home is the preferred charging habit of electric vehicle owners followed
by public and workplace charging. There are several other driver behaviour that needs to be
understood for optimally locating electric charging stations (Long Pan, 2019).

The cost of charging at the various locations play a crucial role in the choice of charging
location such as workplace, home or public charging facilities (Debapriya Chakraborty, 2019).



Different charging locations have need for different research approaches as the charging
location is mostly fixed with longer availability of charging time at home and workplace, while
the same is not the case with public locations (Zhaomiao Guo, 2016). With increase in
deployment of electric vehicles there could be potential problems expected in the existing
power networks, which under certain conditions may lead to power quality problems and
voltage imbalance (Putrus G. A.).

The problem we attempt to solve in this study is determine the optimal location of electric
charging stations with respect to the capacity of the existing power grids, and to understand
the number of electric vehicles that can use public charging stations without overloading the
power grid at peak usage times. Fast charging is critical for customers who would opt to
charge at a public charging station (Keisuke Nansai, 2001). Wide-spread adoption of EVs
depends on the location and sizing of fast charging stations. Construction of fast charging
stations in turn depend on capacity available and estimated return on investment (Payam
Sadeghi-Barzani, 2014). Fast charging requires dedicated hardware to meet the demand,
which in turn would increase the load on the power grid. To solve this, first approach would
be using fixed charge model or location-allocation mode (Lin, 2014) that imposes a constraint
on the maximum capacity available from the grid, expected demand based on output of a
gueueing model, while treating the demand from each EV to be a constant.

The adoption of electric vehicles by consumers is directly dependent on the accessibility to
EV charging stations. The approach followed is to determine the locations in North Sydney
and then plan the layout. This requires understanding the constraints to be considered during
this research phase. As the research progresses, further constraints for consideration can be
added and the models can be tweaked accordingly.

1. Location models

In this section we explore the relevant methodologies to locate a facility based on factors such
demand, cost, wait time, charging time, traffic conditions, raw material availability, maximum
capacity of the facility (extent of existing power grid capacity), etc.

1.1. p-median model
This method can be used to model the location of EV charging stations provided the operator
is willing to invest based on the demand.

The p-median model can be considered as an optimization model to cluster points or entities.
Knowing the demand areas and assuming either the demands are equal or ignoring the
demands, this model can be used to determine points to locate a facility such that it meets
the demand with minimum distance of transportation for the consumer. Based on the
number of facilities (medians) the operator is willing to set up, the p-median model can be
used to identify layouts within a chosen location.

Consider a distance matrix d;; such that it defines the distance between all i and j, and p is
the number of medians/facilities. This model can be used to optimize the selection of the
facilities in the location such that it reduces the overall distance between any i and j.



Xj; = 1if j is a median and attached to itself, 0 otherwise. X;; = 1if i is not a median and is
attached to a median j.

Then the constraints are:
l. ;‘=1ij = p, where n is the number of potential layouts within the location.
This constraint limits the number of medians as declared.
[l Xl- <XjjVij
The second and third constraints ensure that each point is attached to only one other
point if a non-median or self if a median.
Thus, total number of constraints would be 1 + n + n?.

To identify the ideal layout points, the objective function has to reduce the distance between

any two points i and j, i.e., minimize }.3'd;; X;;. There are several heuristic solutions available
n

p) ways is a computationally expensive

to solve the p-median problem, as enumerating over (
task.

1.2. Location-allocation model

This model can be used when there are potential location or layout points and there is a need
to identify best suited layouts with any predefined restrictions on capacity, demands, cost,
etc.

Consider locating a facility at i from m potential locations, then there is a fixed cost f; for
locating the facility and a maximum capacity constraint C;. Suppose there is a demand point
Jj from n demand points, then the demand that needs to be met is defined by D;. The cost
functions between i and j can be modelled as ¢;;. Then, ¥; = 1 when i is chosen and X;; is
the quantity transferred between the two points.

Now, the objective function would have two costs namely, cost of location and cost of
allocation of capacity for each of the demand points.

Minimize 2/, fiY; + X% Y=g €ijXi;

Constraints can be declared as,
. = Y=k

This constraint can be used when the number of locations has to be limited to a certain
value of k.

Il.  Since each facility has a capacity specified by C;, ¥7_; X;; < C;Y;
This constraint can be used to determine whether a chosen facility (Y; = 1) has the
capacity required to meet the demand of the point (EV in our case).

m. Y Xij = Dj, since each demand point can only receive maximum or lesser than its

maximum demand (charging requirement of an EV in our case).

By removing the first constraint, the model (with some changes) can automatically determine
the optimum number of stations required.



2. Constraints
The constraints for our research are average queueing length, capacity of existing electrical
network in the selected locations for setting up the facilities.

2.1. Average queueing length

The average queuing length for charging electric vehicles has been modelled recently in
(Grigorev et. All, 2021), (Patel et all, 2021) in which the authors consider several methods for
modelling queue gaiting times at charging facilities, including transport modelling outputs
and energy substantion capacity datasets. The number of vehicles waiting to enter a charging
facility can influence the waiting times and the charging inside the station given its restricted
number of charging plots.

2.2. Capacity of existing electrical network

The below table categorizes the EV charging stations into 4 types based on their capacity and
infrastructure requirement, according to definitions in Queensland, Australia (see
Queensland Government, 2020).

Charging Type Capacity & | Location Infrastructure review
category consumption requirement
per charge
Basic AC 2.4 kW — 7 kW | Typical home
10 -35 kWh parking
Destination AC 11 kW =22 kW | Malls, charging | Properties electrical
8-32 kWh facilities, etc. infrastructure.  Network

impact unlikely.

Fast DC 50 kW — 150 kW | Typical parking in | Electrical network capacity
15-90 kWh major transport | study required. Location
routes near high power
transformer.
Ultrafast DC 150 kW — 350 | National highways | Require significant
kW investment in local
20-100 kWh electrical network.

Electricity networks must safely deliver the amount of electricity required by commercial and
residential establishments. At certain occasions, the existing network may not be able to
operate to meet the capacity requirement when the demand for power is high. At such
instances, AEMO adopts load shedding (also known as rotating outages or power sharing)
which is an interruption in the supply of power in a planned and co-ordinated way (see
guidelines in (AEMO, 2020)).

Conclusion

The above investigations have been taken into consideration and the modelling outputs have
been published in (Grigorev et. All, 2021). For reducing the description in this tehcnical report,
we redirect the reader to the above manuscript. Also, an important future direction of this
study is to include an optimal location of new EV charging stations inside the network, and
simulate their impact via a combined simulation and queue modelling approach, with
constraints on the energy substation capacity. Several hybrid approach of mixing traffic



simulation with data driven algorithsm and even air quality monitoring can be found in several
pubslined works from (Mihaita et. All, 2019), (Ou et all, 2020), (Shafiei et. All, 2020), etc.
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